The Magic in 2-Channel Sound Reproduction
Why is it so rarely heard?

Siegfried Linkwitz
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions

The room response
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions

The room response

Typical stereo reproduction
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions

The room response

Typical stereo reproduction

Optimal stereo reproduction
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions
The room response
Typical stereo reproduction
Optimal stereo reproduction
Two loudspeaker design examples
The Magic in 2-Channel Sound Reproduction

Why is it so rarely heard?

Hearing under anechoic conditions

The room response

Typical stereo reproduction

Optimal stereo reproduction

Two loudspeaker design examples

My challenge to Loudspeaker Designers
Hearing under anechoic conditions

A - Headphone Stereo
Hearing under anechoic conditions

B - Loudspeaker Stereo
The Room Response

R1 - Reflections
The Room Response

R2 - Reflections

[Image of sound distribution diagram showing different reflection paths: Direct, Rear, Rear+Side, Rear+Floor, Side, Rear+Side+Floor, Side+Floor]
The Room Response

R3 - Reflections
The Room Response

R4 - Reflections
The Room Response

R5 - Resonance modes
The Room Response

R6 - Reverberated sound field

a) Room dimensions

- **L** = 22.6 ft \(\approx 6.88 \) m
- **W** = 16.0 ft \(\approx 4.88 \) m
- **H** = 9.0 ft \(\approx 2.75 \) m

b) Acceptable room if:

- \(1.1 \cdot (W/H) < (L/H) < 4.5 \cdot (W/H) \cdot 4 \)
- 2.0 2.5 4.0

(R. Walker, BBC, 1996)

c) Below frequency \(f_m = 150 \) Hz

- Total number of modes \(N = 55 \)
- Avg. mode spacing \(df = 1.6 \) Hz at \(f_m \)

d) Estimated avg wall absorption \(a = 25\% \)

- Reverberation time \(T_{60} = 456 \) ms

e) Estimated reverberation time \(T_{60} = 456 \) ms

- Resonance bandwidth \(bw = 4.8 \) Hz
- Rise time \(T_{rise} = 146 \) ms
- Schroeder frequency \(f_s = 134 \) Hz
- Monopole reverb distance \(R_m = 0.80 \) m \(\approx 2.6 \) ft
- Dipole reverb distance \(R_d = 1.39 \) m \(\approx 4.6 \) ft
- Avg wall absorption \(a = 25\% \)

SL 5/27/15

Sensible Recording and Rendering of Acoustic Scenes
Typical Stereo Reproduction

Generic box loudspeakers
Typical Stereo Reproduction

Design axis/window
Typical Stereo Reproduction

Auditory scene

Focused lateral imaging. Depth?
Height of scene = Height of speaker boxes
Auditory scene is hard-bounded by the speakers
Like listening to headphones at a distance
Scene collapses into nearest speaker
Aware of listening to 2 speakers in a room
Optimal Stereo Reproduction

Auditory scene

Focused lateral imaging. Depth
Height of scene much greater than Height of speaker boxes
Auditory scene is soft-bounded by the speakers
Like being at the performance venue
Scene is viewed from off-center seat without collapsing
Not aware of listening to speakers in a room
Optimal Stereo Reproduction

Loudspeaker & Setup Requirements

1 – Speaker’s 4π power response similar to on-axis response
2 – Speakers free of audible non-linear and linear distortion
3 – Speakers set up >1 m from large reflecting surfaces
4 – Space behind speakers is diffusive & absorptive behind listener
5 – Comfortable living space with RT60 around 450 ms
Two Loudspeaker Design Examples

D - Full-range dipole loudspeaker

H - Hybrid loudspeaker
Two Loudspeaker Design Examples

D1 – Open-baffles
Two Loudspeaker Design Examples

D2 – Woofer response at baffle opening

[Graph showing woofer response with labels: Proto #3 Woofer, opening, equalized, -12dB/oct, LR4]
Two Loudspeaker Design Examples

D3 – Lower midrange polar response
Two Loudspeaker Design Examples

D4 – Upper midrange polar response
Two Loudspeaker Design Examples

D5 – Tweeter polar response
Two Loudspeaker Design Examples

D6 – Equalization & Crossovers

[Graph showing frequency response and crossover points labeled LR4, LR2, LR4, W, LM, UM, T with a slope of -12 dB/oct]
Two Loudspeaker Design Examples

H1 – Hybrid loudspeaker
Two Loudspeaker Design Examples

H2 – On-axis response
Two Loudspeaker Design Examples

H3 – Polar response

![Graph showing frequency response with polar response](image)
Two Loudspeaker Design Examples

H4 – Polar response
Two Loudspeaker Design Examples

H5 – Equalization & Crossover
Optimal Stereo Reproduction

e.g. Dipole or Hybrid Loudspeaker

1 – Speaker’s 4π power response similar to on-axis response
2 – Speakers free of audible non-linear and linear distortion
3 – Speakers set up >1 m from large reflecting surfaces
4 – Space behind speakers is diffusive & absorptive behind listener
5 – Comfortable living space with RT60 around 450 ms
My Challenge to High-End Speaker Designers

• Recognize that the listening room is rarely the problem for sound reproduction, but how it is illuminated by the loudspeakers

• Therefore a flat on-axis frequency response is not sufficient

• Therefore reduce the variation in speaker directivity

• Reduce non-linear and linear distortions for higher SPL

• For meaningful, descriptive comparisons with other speakers designers & reviewers should own a pair of Lxmini as reference
Thank you for your attention

Please spread the message